
24 CROSSTALK The Journal of Defense Software Engineering October 2006

The notion that an object is an instantiat-
ed member of a class is a comfortable and

familiar one to Generation X programmers
who were educated in the 1990s and to pro-
grammers with Ada95, C++, or Java expe-
rience. However, to those who have back-
grounds replete with Pascal, COBOL, or
FORTRAN skills, the OO paradigm can be
intimidating, confusing, or even exasperat-
ing. If you examine OO code, the con-
structs seem familiar enough: declarations,
loops, functions, and procedures. So, what
about OO development is so vastly differ-
ent, unique enough that it even has been
designated as a new paradigm?

In a nutshell, the OO approach:

... encapsulates data with corre-
sponding operations and employs
polymorphic mechanisms such as
class inheritance. With data encap-
sulation, object classes can be con-
veniently reused, modified, tested,
and extended. [1]

This quote, while a concise summary of the
paradigm, is laden with OO-speak, provid-
ing little help to the curious neophyte.

This article explains several key aspects
of OO software – abstraction, encapsula-
tion, information hiding, decentralized
problem solving, inheritance, polymor-
phism, and reuse – with the aim of pre-
senting a clear overview and summary of
the unique strengths of object-oriented
software development.

Abstraction
Abstraction is a term used to describe putting
certain parts of a system in a black box; that
is, to ignore the implementation details of
that subsystem. We frequently use abstrac-
tion in everyday life: We start our automo-
biles without thinking about ignition sys-
tems or internal combustion, we send doc-
uments to printers without fully under-
standing spoolers and queues in the net-
work.

With abstraction, system developers do
not need to think about systems in their full
complexity. It would be the rare automobile

designer who could simultaneously keep
track of details about the exhaust manifold
and the seat belt buckle; similarly, software
developers need to abstract-away details of
some parts of the system while focusing on
others. Also, with abstraction, code can be
reused without full knowledge of the
reused component. Instead, we can focus
on an abstract mental model of the com-
ponent’s expected behavior, which we will
refer to as its cover story or contract. As long as
reused code maintains the cover story, and
as long as it does not violate its contract, it
does not matter how its task is accom-
plished. Again, consider the automobile
designer: Subsystems that rely on the cor-
rect operation of an engine can be designed
to work regardless of whether ignition tim-
ing is accomplished with a mechanical dis-
tributor or by using an electronic timing
mechanism. So long as the timing works
correctly, the cover story is not broken, and
the system will work.

Telling programmers that they do not
need to know implementation details might
make them uneasy. Should they not be con-
cerned about reliability, supportability, and
efficiency? Absolutely. Abstraction is not
used to integrate shoddy code into a system
under the guise of reuse. Rather, we do not
need to know the details because the contracts
already provide sufficient information
about the expected object behavior. The
end goal is to have a software architecture
that facilitates both substitution and reuse.
This also helps the system evolve with min-
imal collateral damage from changes (i.e. we
can change one part of the system without
having to change others, an important and
recurring theme in OO).

Encapsulation
Reuse is nothing new – code reuse libraries
have been around for decades. But in OO,
we reuse more than algorithms; we reuse
classes.

In OO, classes and objects are closely
related; an object is a particular member (or
instance) of a class. Classes are a kind of tem-
plate, providing a means to define both the
state and behavior of an object.

For example, a car’s state might be
described as engine running, traveling east at 45
mph, with a total of 150 miles traveled. We
might expect the possible behaviors of a car
to include turning the engine on, turning
the engine off, moving at some speed and
direction, changing the speed and direction,
and retrieving the total distance traveled.

Once the object’s state and behavior are
described, we can then describe a class of
cars. This is done by identifying a car’s attrib-
utes, as well as the methods (sometimes
called the operations) that a car can perform.
An example of this is shown in Figure 1.

In an OO software system, an
Automobile class is likely to look quite a bit
different than the one shown in Figure 1.
After all, Defense Advanced Research
Projects Agency (DARPA) Grand
Challenge [2] aside, computers do not
change the direction and speed of a car; dri-
vers do. However, consider a hypothetical
information system for a state’s bureau of
motor vehicles. Such a system might also
model a class for automobiles, but it would
look more like the one depicted in Figure 2.

An object is an instance of a class. When
we create a new instance, the attributes of
that particular object will take on specific
values. For example, if someone bought a
brand-new Lexus as a gift for their spouse
(like on those holiday commercials), that
would necessitate a trip to the license
bureau, where a friendly clerk would instan-
tiate a new object of the Automobile class type
(actually, the clerk would do this unknow-
ingly – thanks to abstraction – merely by
clicking on a New Registration icon). For
this instance, Make = Lexus, Model =
GS300, Year = 2007, Color = Silver, etc.
The attributes of a class are analogous to a
record in languages such as Pascal, while the
methods of a class are implemented as pro-
cedures and functions. Collectively, the val-
ues of the attributes define the object’s state.
Essentially, the attributes and methods
jointly implement the class’ contract: They
specify what information the object con-
tains, as well as its expected behavior.

OO systems place the data (the attribut-
es) and the operations that use that data

A Gentle Introduction to
Object-Oriented Software Principles

For many of today’s software professionals, the concepts behind object-oriented (OO) software principles are as familiar as the
tips of their fingers; for others, this is not the case. If you are a structured-programming developer who is beginning to suspect
that OO is not simply the flavor-of-the-decade, or if you are the program manager of a software-intensive system who has never
written code, you may be wondering: Just what is this OO paradigm? This article will help you find that answer.

Maj. Christopher Bohn, Ph.D., and John Reisner
Air Force Institute of Technology

A Gentle Introduction to Object-Oriented Software Principles

(the methods) together. Moreover, the
object’s state can only be changed by using
the operations defined in the class.
Organizing software systems in a modular
way is not new [3], but this encapsulation of
attributes and methods – that is, the group-
ing of data and behavior in the same entity,
as opposed to them being dispersed
throughout the system – is a key differen-
tiator between the structured and object
paradigms.

Information Hiding
As a rule, when we define a class, we speci-
fy that the methods are public while the
attributes are private; that is, objects can call
the methods of another object, but no
other object can have direct access to the
values of its attributes. This means that the
only way to read or change the state of an
object (i.e., to read or change an attribute’s
value) is through the class’ methods.

In our Figure 2 example, we can assume
that the Register method will assign initial
values to all of the attributes (the first six
likely entered by the clerk, while the seventh
might be automatically generated with a cal-
endar function, e.g., one year from today’s date).
The renew() method will only affect one
attribute, plateExpirationDate. If some
other scenario requires other read or write
access to the variables, then methods to
perform these reads or writes would need
to be added to the class. For example, we
might want to add a changeColor() meth-
od, so that if an auto owner repainted his
car, that change could be reflected in the
system without having to re-register the
vehicle. However, there would not be a
changeYear() method, as the model-year of
an automobile would not change.

Using the methods to access the attrib-
utes means that the information is hidden by
a public interface, (i.e., the data are hidden
behind the public methods of the class). If
the information were not hidden, then
another object could directly access and
change an Automobile object’s year, either
accidentally or by design causing that object
to break its cover story (the modified con-
tract states that Automobiles can be regis-
tered, renewed, and re-painted, but not arti-
ficially aged). Returning for a moment to
the real-world automobile (Figure 1), any-
one who suspects that a screwdriver has
been used to tamper with a car’s odometer
can sympathize with the perils of direct
access to data that should be protected.

In the realm of OO, we can assume
that any part of a component we depend
upon will always behave as expected, and
that no other part of the system will cause
our part to violate a contract. Encapsula-
tion and information hiding keep both of

these assumptions safe.

Decentralized Problem Solving
Thus far, our examples have been limited to
a single class (i.e., the Automobile class). In
a small-scale system, encapsulated objects
are a nifty idea, but the full benefits of these
assumptions are not realized until a system
with many interacting classes is designed.

OO software uses the concept of mes-
sage passing to create an architecture in
which objects request services from and
provide services for each other. When you
want an object to do something, you invoke
one of its methods by passing a message. This is
very similar to making a procedure or
function call. However, there are two
notable differences, one being physical (the
called code resides in a different and sepa-
rately compiled module from the calling
code); while the other is conceptual (the
method invoked is part of a class’ prede-
fined public interface). These differences
allow us to design systems that have inter-
acting classes of objects with well-defined
responsibilities. In a vehicle registration
system, such an architecture may not yield
much of benefits, but in other applications
(such as a windows-based operating sys-
tem, or a suite of gaming software), the
potential benefits are quite high.

Perhaps more importantly, the object
paradigm allows us to create decentralized
solutions to computing problems. Decen-
tralization permits us to solve complex
problems that we could not solve with a
centralized solution. For example, consider
the post office. If the clerk behind the
counter was responsible for delivering
every incoming piece of mail, then the
postal service would be very inefficient
indeed. Instead, the post office employs
classes of people and machines with well-
defined responsibilities – clerks, sorters,

handlers, deliverers – each doing their part
to deliver around 100 billion pieces of
mail annually [4].

Inheritance
In the course of developing OO software,
we often find that we need a class of
objects that specializes an existing class. For
example, a Leased Automobile is a special
type of automobile. Besides the make,
model, and other attributes that every auto-
mobile has, a leased automobile has anoth-
er attribute: the lessor. Another special type
of Automobile is a state-owned automo-
bile. Through a mechanism called inheritance,
we can formalize this relationship. We call
Automobile the parent class or superclass,
while LeasedAutomobile and StateAuto-
mobile are known as child classes or subclasses.
This is sometimes called the is-a relation-
ship: a LeasedAutomobile is-a kind of
Automobile. Everything that is true about a
parent class is also true about its child
classes; the special types of automobiles
have all the same attributes and operations
as a standard automobile. Plus, they have
additional attributes and/or operations.
For example, a Leased-Automobile also has
a Lessor attribute, and a StateAutomobile
has a scheduleMaintenance() operation.
The attributes and operations in Auto-
mobile need not be reproduced in its sub-
classes; they are inherited.

Another situation is known as generaliza-
tion. For example, boats also need to be reg-
istered. If we discover that there are many
similarities between boats and automobiles,
we can create a new class, Vehicle, and make
Automobile and Boat subclasses of Vehicle.
The commonalities among Automobile and
Boat are then moved into the Vehicle super-
class, possibly renaming attributes that rep-
resent the same concept by different names.

Inheritance leads to improved reuse and
maintainability. Because subclasses inherit all

October 2006 www.stsc.hill.af.mil 25

startEngine()

stopEngine()

accelerate()

decelerate()

changeDirection()

getDistanceTraveled()

V

Automobile

engineStatus

speed

direction

distanceTraveled

Automobile

vehicleIDnumber

make

model

year

color

plateNumber

plateExpirationDate

register()

renew()

Figure 2: Another Automobile Class, One More
Likely to be Found in an Information System

Fi 1
Figure 2.

startEngine()

stopEngine()

accelerate()

decelerate()

changeDirection()

getDistanceTraveled()

V

Automobile

engineStatus

speed

direction

distanceTraveled

Automobile

vehicleIDnumber

make

model

year

color

plateNumber

plateExpirationDate

register()

renew()

Figure 1: A Class of Automobiles, Defined By
State (Four Attributes) and Behavior (Six Methods)

Software Engineering Technology

the attributes and operations of their super-
class, they automatically get all the debugged
functionality that is already in their parent
class. When creating a child class, we need
only concentrate on the ways in which the
new class is different from its parent.

Maintainability improves because when
a change is made to a parent class, then the
subclasses (and their subclasses) automati-
cally get the changes, too. Make the change
in one place, and the change is propagated
through the entire inheritance hierarchy.
Another way maintainability is improved is
through isolation of the subclasses. If a
change needs to be made for only one spe-
cialized class, then those changes can be
made without any risk of introducing new
errors into other classes. This increased
maintainability is even more beneficial as
code evolves over time.

Polymorphism
Because everything that is true about a par-
ent class is true about its child classes,
instances of the child classes will maintain
their parent’s cover story as their own. They
will have a richer cover story, to be sure, but
they should not break the cover story they
inherited. To put it another way, their con-
tract is an amendment of their parent class’

contract: They may promise a little more, but
they will also honor their parent’s contract.

This is the beginning, but not the end,
of the concept known as polymorphism.
Recall that one of the purposes of abstrac-
tion is to support the substitution of one
component with another that honors the
first component’s contract. Polymorphism
is a special form of substitution, in which
the component to be used may not be
known until the program is running.

There is more to polymorphism than
simply substituting one class with another
that has a few extra attributes and methods.
When we create a subclass, we can override
some of the methods in the superclass.
That is, the method has the same name and
parameters as the method in the parent
class, but actual code for the method is dif-
ferent, providing the behavior appropriate
for the particular subclass. Consider the
inheritance tree in Figure 3; we have marked
with an asterisk the operations that are
overridden in the subclasses. The register()
operation has been overridden by Auto=
mobile, Boat, and LeasedAutomobile so
that the clerk would be prompted to enter
values for the additional attributes.
StateAutomobile, though, reuses the regis-
ter() operation provided by its parent class.

Similarly, all classes except LeasedAuto-
mobile reuse the renew() operation provid-
ed by Vehicle, since they do not need any
special behavior. LeasedAutomobile, how-
ever, overrides renew(), since the lessor may
need to be consulted.

When the software expecting a Vehicle
object is provided an object whose specific
class is somewhere in Vehicle’s inheritance
hierarchy, the operations appropriate to that
object will be invoked automatically (the
details of how this happens are well beyond
the scope of this paper). For example, if an
Automobile object is registered, the code
found in the register() method of the
Automobile class is executed. However,
when a LeasedAutomobile object is regis-
tered, then the register() code executed is
the overriding method found in Leased
Automobile. This selection of the correct
method to be executed occurs automatical-
ly, without any embedded if-then-else or
case logic required; therein lies the power of
polymorphism.

Tying It All Together
The concepts presented in this article are
often difficult to grasp, especially in a single
sitting. Moreover, people who are just
beginning to understand these concepts
often find that they can follow an OO
designer’s line of reasoning, but have a
more difficult time when it is their turn to
try it out. Some authors have said that it
takes six to nine months of experience to
become proficient in fully exploiting OO
techniques [5]. Further, the impact of
adopting an OO mindset is not limited only
to design; indeed, it has implications
throughout the development life cycle,
from requirements analysis to design, to
implementation and test, and on through
maintenance. Volumes could be (and have
been) written on each of these topics. To
become more familiar with the breadth and
depth of OO development, we recommend
that you investigate educational opportuni-
ties from a reputable continuing education
provider, and that you find a software engi-
neer with mature OO skills to serve as a
mentor as you grow into increasingly larger,
increasingly critical endeavors.u

Additional Reading
If you are interested in learning how the
OO approach influences the software life
cycle, you may want to start with these
books. Alistair Cockburn’s Writing Effective
Use Cases can help you turn your functional
requirements into use cases, which will
drive the rest of your project’s develop-
ment; Doug Rosenberg’s Use Case Driven
Object Modeling with UML: A Practical
Approach does a fine job of describing the

26 CROSSTALK The Journal of Defense Software Engineering October 2006

Figure 3: An Inheritance Hierarchy of the Vehicle Class

Figure 1.
Figure 2.

Vehicle

color

registrationNumber

expirationDate

register()

renew()

changeColor()

Automobile Boat

LeasedAutomobile

StateAutomobile

vehicleIDnumber

make

model

year

register()*

length

register()*

lessor

leaseTerminationDate

register()*

renew()

extendLease()

terminateLease()scheduleMaintenance()

A

A Gentle Introduction to Object-Oriented Software Principles

activities you would use to begin your
design from those use cases. Implementa-
tion issues can be language-dependent, but
Steve McConnell’s Code Complete and
Timothy Budd’s An Introduction to Object-
Oriented Programming address the issues as
language-neutral as possible. Paul
Jorgensen’s Software Testing: A Craftsman’s
Approach is a good book for testing in gen-
eral, and the last five chapters specifically
cover object-oriented testing. Similarly,
Thomas Pigoski’s Practical Software
Maintenance covers the breadth of software
maintenance, with a chapter dedicated to
OO’s impact. If you’re already familiar with
OO concepts, you may want to look at
some more advanced books, such as Ken
Pugh’s Prefactoring, Joshua Kerievsky’s
Refactoring to Patterns, and David Astel’s Test-
Driven Development: A Practical Guide.

References
1. Lee, G. Object-Oriented GUI Appli-

cation Development. Prentice-Hall,
1993.

2. DARPA. Grand Challenge <www.
darpa.mil/grandchallenge/>.

3. Parnas, D.L. “On the Criteria To Be
Used in Decomposing Systems into
Modules” Communications of the
ACM 15.12 Dec. 1972: 1053-1058.

4. United States Postal Service. “2005
U.S. Postal Service Annual Report”
<www.usps.com>.

5. Eckel, B. Thinking in Java. Prentice-
Hall, 2002.

October 2006 www.stsc.hill.af.mil 27

About the Authors

John Reisner is the
Director of Extension
Services at the Air Force
Institute of Technology’s
(AFIT) School of Engi-
neering and Manage-

ment. He retired from the Air Force in
2005 after serving 20 years as a software
developer, systems analyst, and instruc-
tor of Software Engineering. He is an
Institute of Electrical and Electronics
Engineers-certified software develop-
ment professional and has a bachelor
degree from the University of Lowell
and a master’s degree from AFIT.

Air Force Institute of Technology
2950 Hobson WY
Wright-Patterson AFB, OH
45433-7765
Phone: (937) 255-3636 x7422
DSN: 785-3636
E-mail: john.reisner@afit.edu

Maj. Christopher Bohn,
Ph.D., is a software engi-
neering course director at
the Air Force Institute of
Technology’s (AFIT)
School of Systems and

Logistics where he teaches a series of
distance-learning short courses. Over
the past 13 years, Bohn has served in
various Air Force operational and
research assignments, including time as
an engineer for the Air Force Research
Laboratory’s Collaborative Enterprise
Environment. He is an Institute of
Electrical and Electronics Engineers-
certified software development profes-
sional. Bohn has a bachelor’s degree in
electrical engineering from Purdue
University, a master’s degree in comput-
er engineering from AFIT, and a doctor-
ate from Ohio State University.

AFIT/LS Research Park Campus
3100 Research BLVD
Kettering, OH 45420-4022
Phone: (937) 255-7777 ext. 3415
DSN: 785-7777 ext. 3415
Fax: (937) 656-4654
DSN: 986-4654
E-mail: christopher.bohn@afit.edu

What Science Fiction Authors Got
Wrong, and Why We’re Better Off For It

Maj Christopher Bohn, Ph.D.
Air Force Institute of Technology

Computers are commonplace today, and they have changed much of
the way we go about our lives, saving time and money. Surprisingly,
as much as classical science fiction authors were visionaries, they did
not foresee the arrival of the digital computer and its influence on
modern life.

Robert Heinlein once had a discussion with a professional
astronomer in which the conversation turned to Heinlein’s atten-
tion to detail. Heinlein recounted how, when writing Space
Cadet (1948), he and his wife used yards of butcher paper over
three days to calculate a particular orbit; the results were described
in the story with one line of text, but it was necessary to drive the
drama. When the astronomer wondered why Heinlein did not
use a computer to make the calculation, he replied, My dear boy,
this was 1947.

Of course, computers are commonplace today, and they have
changed much of the way we go about our lives, saving time and
money. Surprisingly, as much as Heinlein and other Golden Age
science fiction authors were visionaries – Heinlein, for example, is
credited with inventing the waterbed and tele-operated manipu-
lators (waldoes), and with heavily influencing spacesuit design;
none of them foresaw the coming of the digital computer and its
influence on modern life.

So while computers are everywhere today, Heinlein did not
have ready access to computers and neither did his characters. In
Starman Jones (1953), faster-than-light travel is possible by enter-
ing hyperspace singularities on precise vectors. Computing course
corrections to get the spaceship on the correct vector required
astrogators to make rapid calculations making use of mathemati-
cal tables and a computer that amounted to little more than a 4-
function calculator. Heinlein, a former naval officer, no doubt was
drawing an analogy with mathematical tables classically used to
navigate seaships (Interestingly, Charles Babbage was inspired to
develop a mechanical computer in the 19th century while review-
ing errata for a set of mathematical tables for celestial navigation).

MORE ONLINE FROM CCRROOSSSSTTAALLKK

CrossTalk is pleased to bring you this additional article
with full text at <www.stsc.hill.af.mil/crosstalk/2006/10/index.html>.

